a database of enhancers identified by high-throughput reporter assays

Browse Epromoter Database

 

Title: Genome-wide quantitative enhancer activity maps identified by STARR-seq
Accession:GSE40739PMID: 23328393
Ref-genomehg38Cell Line: HeLa cells
Abstract:

Genomic enhancers are important regulators of gene expression, but their identification is a challenge, and methods depend on indirect measures of activity. We developed a method termed STARR-seq to directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq identifies thousands of cell type-specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map. This map reveals the highly complex regulation of transcription, with several independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq can be used to identify and quantify enhancer activity in other eukaryotes, including humans.

Title: Transcriptional plasticity promotes primary and acquired resistance to BET bromodomain inhibition
Accession:GSE63782PMID: 26367798
Ref-genomehg38Cell Line: K-562 cells treated with DMSO or 250 nM JQ1
Abstract:

Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.

Title: Functional assessment of human enhancer activities using whole-genome STARR-sequencing
Accession:GSE82204PMID: 29151363
Ref-genomehg38Cell Line: LNCaP cells
Abstract:

Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.RESULTS: In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements.CONCLUSION:WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

Title: Resolving systematic errors in widely-used enhancer activity assays in human cells enables genome-wide functional enhancer characterization
Accession:GSE100432PMID: 29256496
Ref-genomehg38Cell Line: HeLa-S3 cells
Abstract:

The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that two previous observations relating to plasmid-transfection into human cells render such assays unreliable: (1) the function of the bacterial plasmid origin-of-replication (ORI) as a conflicting core-promoter and (2) the activation of a type I interferon (IFN-I) response. These problems cause strongly confounding false-positives and -negatives in luciferase assays and genome-wide STARR-seq screens. We overcome both problems by directly employing the ORI as a core-promoter and by inhibiting two kinases central to IFN-I induction. This corrects luciferase assays and enables genome-wide STARR-seq screens in human cells. Comprehensive enhancer activity profiles in HeLa-S3 cells uncover strong enhancers, IFNI-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells, and are key to the characterization of human enhancers.

Title: Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions
Accession:GSE71279PMID: 27701403
Ref-genomehg38Cell Line: HepG2 and K562 cells
Abstract:

Massively parallel reporter assays (MPRAs) enable nucleotide-resolution dissection of transcriptional regulatory regions, such as enhancers, but only few regions at a time. Here we present a combined experimental and computational approach, Systematic high-resolution activation and repression profiling with reporter tiling using MPRA (Sharpr-MPRA), that allows high-resolution analysis of thousands of regions simultaneously. Sharpr-MPRA combines dense tiling of overlapping MPRA constructs with a probabilistic graphical model to recognize functional regulatory nucleotides, and to distinguish activating and repressive nucleotides, using their inferred contribution to reporter gene expression. We used Sharpr-MPRA to test 4.6 million nucleotides spanning 15,000 putative regulatory regions tiled at 5-nucleotide resolution in two humancell types. Our results recovered known cell-type-specific regulatory motifs and evolutionarily conserved nucleotides, and distinguished known activating and repressive motifs. Our results also showed that endogenous chromatin state and DNA accessibility are both predictive of regulatory function in reporter assays, identified retroviral elements with activating roles, and uncovered 'attenuator' motifs with repressive roles in active chromatin.

Title: p53 regulates enhancer accessibility and activity in response to DNA damage
Accession:GSE83780PMID: 28973438
Ref-genomehg38Cell Line: Fibroblasts
Abstract:

The tumor suppressor p53 is a well-characterized transcription factor that can bind gene promoters and regulate target gene transcription in response to DNA damage. Recent studies, however, have revealed that p53 binding events occur predominantly within regulatory enhancer elements. The effect of p53 binding on enhancer function has not been systematically evaluated. Here, we perform a genome-scale analysis of enhancer activity from p53-bound sequences using a series of massively parallel reporter assays (MPRAs) coupled with the assay for transposase-accessible chromatin (ATAC-Seq). We find that the majority of sequences examined display p53-dependent enhancer activity during the DNA damage response. Furthermore, we observe that p53 is bound to enhancer elements in healthy fibroblasts and poised for rapid activation in response to DNA damage. Surprisingly, our analyses revealed that most p53-bound enhancers are located within regions of inaccessible chromatin. A large subset of these enhancers become accessible following DNA damage indicating that p53 regulates their activity, in part, by modulating chromatin accessibility. The recognition and activation of enhancer elements located within inaccessible chromatin may contribute to the ability of the p53 network to function across the diverse chromatin landscapes of different tissues and cell types.

Title: A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity
Accession:GSE83894PMID: 27831498
Ref-genomehg38Cell Line: HepG2 cells
Abstract:

Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson's R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.

Title: In Vivo Characterization of Linc-p21 Reveals Functional cis-Regulatory DNA Elements
Accession:GSE73472PMID: 27524623
Ref-genomemm10Cell Line: C2C12 cells
Abstract:

The Linc-p21 locus, encoding a long non-coding RNA, plays an important role in p53 signaling, cell-cycle regulation, and tumor suppression. However, despite extensive study, confusion exists regarding its mechanism of action: is activity driven by the transcript acting in trans, in cis, or by an underlying functional enhancer? Here, using a knockout mouse model and a massively parallel enhancer assay, we delineate the functional elements at this locus. We observe that, even in tissues with no detectable Linc-p21 transcript, deletion of the locus significantly affects local gene expression, including of the cell-cycle regulator Cdkn1a. To characterize this RNA-independent regulatory effect, we systematically interrogated the underlying DNA sequence for enhancer activity at nucleotide resolution and confirmed the existence of multiple enhancer elements. Together, these data suggest that, in vivo, the cis-regulatory effects mediated by Linc-p21, in the presence or absence of transcription, are due to DNA enhancer elements.

Download
ID
Gene_Name
Gene_ID
Epromoter_Chr
Epromoter_Start
Epromoter_End
Sequence
1RP11-708J19.2ENSG00000271161.1chr34749934147500340ACCCCGTCTCTACTAAAAAAACACAAAATTTAGCCGGGCATGGTGGCATGTGCCTGTAATCCCAGCTACTCGGGAGGCTGTGGCAGGAGAATTGCTTGAACCCAGGAGGCAGATGTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGCAAAAGAGCAAGAGTCCATCTCAAAAAAAAAAAAAAAAAAAGCCAGGCGTGGTGGCAGGCACCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCACTTGAACCTGGGAGGTGGAGGTTGCAGTGAGCCAAGGTCACTGAGGTCGCACCACTGCACTCTAGCCTGGGCAACAAGAGCAAAACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAGAATAGTAATAAAAAAGAAAAAGAATAAGTGGCTCCTGTAGGGGTGCAAAGCAGCATGGCCAGGCCGGGGTCTGAGTTGGGGTTCTGTCCCTGCTGGGCTGTGGCCCCAGCTGGACTGCTGCCACAGAACTCAGCACCAAATAACTCCAGGAGAAGCTGCAGTGGGACCCGGAGGCGAAGCATATGGAGGTGGAGGACGTGACCCTCAACCGTCGTGCCTGCAGCTTCCGAGTCCTGGTGGTGTCGGCCAAGTTTGAGGGGAAGCTGCTGCTTCAGACACACTGGCGGGTAAATATGTGGCTAGCTGGAGGCTCTCGCACATCCATGCTTTTGAGCAGAAAACCCTCATCCCAGAGCAGTGGGCTTGTGAACGGCAGAAAGGAGGGACTGGCATCTGCACAGCCATTAAATTATAAATCAGGACCAGAAAAAAGGGAAAAGAATGAAGCAGATCCATGTGTTATTTTTGGGCAATGGACAACAAAATATACCGTGTATTAATAAATGAAAAAAAGAAGTAGCGAACAGTGTGGATGGCAGGTTACCAGTAATGTGAAGAAAAATGCAGGGAGACAAATATGTGCATATACTTTGAGAGGCCGAGGCAGTAGAATCACCTGAGCCCA
2KRT86ENSG00000170442.11chr125224880052249799AATCACAAGAAGATTCCCACCCCTGCCTCCCATGCCTGGTCCCAAGACAGTGAGACAGTCTGGAAAGTGATGTCAGAATAGCTTCCAATAAAGCAGCCTCATTCTGAGGCCTGAGTGATCCACGTGCCTGGTATCCTGGCTTCATGAGGCTGGGCAGGGGAAAAGACGGGACTAGAGAAGGCAGGGTCTCCCTGGTGACTAGGAAGCCTTTTGTGCAGGAGACTGAGAAGGCACATGGTGGGATGGGGTGCTGCTCTAAGGAGCAGGACGCTTACCTAGGGTGAGCCTTGGCCTCCAGGTCTGGGGCTGATCCCAAAGATTCTCCTGAGGAAGCCCAGAAGAGCCACGGGGAAATGCAGGCTCTGCCAGCAATTGGGCCTTGGAGGGCTGCCCTGCTAAGGGGGTGGAAAGGCTGTTTGCCTCCCTCCCCCCATGCCCAGAGCTGCCAGAGCACATTCCTTTTGTGAGGAGGCCACAGACGTTCAGCTGCCCCAGCTTCCAGTTTCGGGTGGCCCAGCCAACTTTCATGCCAGCCGTCCTCAGCCCTTCCTGGTGCTGGGTCTGCCAGGCTCATGGTCAGCCAGGCCTGGGGCCCTGGAGAGGTCCTCTGCATCTTGAATTCTGTGGAGGTAGTGGTTGTGGGGGGGAGGTGTGTGTGTGCATGGGAGGAGGGTCCTAGAGTCTAGATCCCCGGTAACAGGTCTGTGCCTAGGACCTTAGTGGAGGGATGGGTTTGTATCTGGATCCATGGGAGTGGGGAAGGACATCTGTGTTAAGTCAGTGCTTGATGGGGGCTTCTATGTCAGAGTCCCCGACACACAGGTCTGTGTGTCTGTGAGTGTGGCAGGTGTTCTGTGGCAGGGCCTATGCATGGGGAAATGTGTCCCTGATGGGCAGCAGCACATATGATGGGTACTGTGGAGCCACAGGGAGGTCTCTGTGTCTGGGACCCCAGGGGTGATGGTGGTGGTGTGGATGGGGGAGCTATGTGGGATGTGTT
3WHAMML1ENSG00000276141.4chr152266385922664858CTATGTATTTCATGTTATGTGCAAACTTTACTTTCAAAGAGTTGTTACCTATATTAATGTATTTACATCATTCACTTAATATATTTTCTCTATCAGTAAAATTGGTTTAGATATATTGGATTAGGATAGAACACGTCACAATTTTTCTCACCTTTATGATTTTTTTTTTAGTTGGACCGTTTTTCAGTTGGTGACAGTGTCAGAAATGAATTAAAGTTGTTAAGAATAGGTAAGGGTAAAGAGAAGGGTGTCCTTATGTATCAATTTTGCTTATTTAGTTTTTTCAAGTTCAATAAGACCCTCCTCTCCCTTCAAGGAAGATGATTCCTAGGCACGTCTGTTATTTCTATCAAAACACCTGAGGTTTTTTTTTTCATTCATATTGTTAAAATACCAATTGTGGAGCGAAAAATGCTTCACCTGGGACTGTCCCCTGACAGGCGGTGCGACGAGGTCAGGCCCGCGCCCGCCAAGCCCTAGGGCCGCTGCCGCCGACGGCCATGGAGGACGAGCAGCCCGACAGCCTGGAGGGCTGGGCGCCGCTCCGGGAGGGCCTCTTCGCCGATCCCCAGGGGCACCGGTTGCGCTTCCTGGTGGCTTGGAACGGCGCGGAGGGCAAGTTTGCTGTGACTTGTCACGACCGCACCGCGCAGCAGCCGCAGCGGCGCGAGGGGCCCGGCTGGGGCTGGAGCACAAGCCCGAGGCCGCCGTGTCCCCGCCCAGCTGGGCCGGCCGGCTCTCGGCCGCGGGGTTCCGCGGCGCGCGCCGGCAGCTAGCGGCGCTGTGGCCGCCTCTGGAACACTGCTTCCCACGGCTGCCGCCGGAGCTGGACGTGGGCGGCGGCGGGGCCTGAGGTCTGGGGCTCGGGCGGTGGGCGCTGCTGTGGCCGGCGCGCGTGGGCCCCGGCGAGGCGGCACTGCAGGAGCTTTGCGGGCAGCTGGAGCGCTACCTGGGCGCGGCGGCCCACGGCTGTGGCTGCGCCACCGTGCGCGACGCTCTC
4AC138649.1ENSG00000277867.1chr152271443922715438TTTCAGTTTTGAACATAAAGCAGTGGCTCTGAGCGCGACCCGGAGGACGACGCCGCGGCCGCAGCCATGGGTGCTGGGCCTGCAGGGGCGCGGGGGGGAGGGGGACGCTAGGACCTGCGGAGCCGGGCGGGAGAGAGGGCTGCCGGGACCGGCCCTAGACACTGAGCCGCGGTGGGATCCCCGCCGGCTCTGCGAGGCCCCTGCGAGCGCCAGGGAGGCGCCTCGAGGGAGCCGGGCAGCCGCCGGCCACTTCAAGGGGGCCCGCCACTTCACGGCGGTCGAAAGAGCCTTGGGGGCACATCTCGGGGTGCGGTGACCCGCCCGGCGCATTTCGGGGGTCGGGGCGCATTTGCCAGGAGACATCTGGAGCCCGGCCCTGCTTCTGTCGGGCTCCAGGGTACCCCTGGATGGCTGCGCTGTGCCCTCGCCGGCCGCCCGGGCGCCACAGCGGCTGAGTTCGCCGGGATCGCCGGGCCGCCGCCGCCCTTGCCACCGGCTGCATGCTCGGCGCCCGGGTCGCGGCCCACCTGGACGCACTGGGCCCCCTGGTCCCCTACGTGCCGCCGCCGCTGCTGCCCTCTATGTTCTACGTGGGCCTGTTCTTCGTCAATGTGCTGATCCTGTACTACGCCTTCCTCATGGAGTACATCGTCCTCAACGTGGGCCTCGTCTTCCTGTTCGAGGACATGGACCAGGCGCTCGTGGACCTCGGCGTGCTCTCCGACCCCGGCTCGGGCCTTTACGATGCTGACTCGGAGCTCGACGTCTTTGATGGGTACTTGGAGTAGGGTCTCGACTGCCGTTCCCCTCTTCCCTCCACGATCCGCAACCCACGCCCTGGACCAGCCGCCCAGATCATGGCGCCACAGCTGGTTGGGGGCACCATCTGGACGGGGATGGTTCCCCAGGAGGAGACCCTCCCCTGCCTCCGAGGCCTGCCTGCTCCCCTCAAAAGCTTCGTGCCAACAGAGAGGTTCCTGTTTGGACCCAGGAGAGTGGA
5AC026150.8ENSG00000260693.1chr153053959330540592CGCTCAAAAAAAAAAAAAAAAAAAAAAAAAAGACCGTGTTTCACCATGTCGTCCAGGCTGGTCTGGAACTCCTAGAACCTGTAGATGTTACCTCATTTGGAAAAAGCATATTTTCAGGTATGATTAAGTTAAGGATCTTGAGGAGAGATTATCCTGGATTGTCTCCGTGGGCATTAAATCCTGGCACATATATCCTTATAAGAGGGAGATAAAGGAGATTTAACTTCAGACAGAAGAGAAGGAGGCCCTGTGACCAAGAAGGCAGAGCCTGGAGTGGTGGAGCTGCAAGTCAATGAATGCCAGCAGCCATCAGAAGCTGCGCAAGTCAAAGGATGGATTTTCCCCTCAGCCTCTGAGAGCACTGGCTCTGCTGAGACCTAGATTTCAGCCCAGTGATACTGATTTTGGACTTCTGATATCCAAAACTGTGAGAAAATAAATTTCTGTTGTTTTAAGTCACCACATTTTTGGTAATTTGCTCTAACAGCCACAGGAAAGTAACATACATGCCTACCTGGGTCCAGTTGTGTCCTGTGACTCCTGCTTTCCTGGGACAGGCAGGCTGCTCCGTGCCTCCTGGCCATCCTACTGGGTGCTGGACGCTGTAGGCTGCTCCATGCCTGTTGGCCATTCCCTTTGGTGCTGGACAGCACTCACATTGTGAAATCCACTGGCCCTGTGAAAAACACCTGGAAATGTTACCAGGAGAGGGGTTAGTTCTCTTTTTGGCAACCCATGTTATTGCTTATGGCTTAATATCTGTGCCTCCAAGATCCCTTCTCTCTGCCTTCATCGATGCCAGGAAAGCAGTCACCTTTTGCCTTTCTTTGCTTCTCAGCAAGTGGCATGTCTCCATGTCACTTTAAGCATCAAGCACACGGAGCCCAATAAGATGCTGAAAAGTGTCTGCCTACAAGGTTACAAGGTGGTGGAGACATTCTGAGCCGGTAACTGCAGGGCTCAGTAAAACCGCTACAGGAAATCTCAAGTTCAAAATGCT
6GOLGA8QENSG00000178115.11chr153055157830552577GTACTGTAATCAAAGATGAAAAATATAGGCCAAAATCATAGACCTTGCATAGAAGCTGGATAATGAAGACAGCTATGGAGAAAAACATAGATACACACATATGGACACACATATATATAAAGTATACACACATATATTTTTTAAAGTTTTAAAGCTTTTAAAGCAAAAGCCAGCCCCTCTTCTCTTCCAGAGTGGGAGGCCTCTCCCCTCTCTTAGAGTGGGTGGGGAGAGCGGTTGCCACGGGCAGCTTTCCTTGTGAGCCACAGGGCCCTCTGGACACGCTGCTGTCTGGCCACGCCCCCTTTCCCTTTCATCTTTCTCATTGACCAATGGGCTTGGAGCATTAAGGCCACGCCCCTATTCCGCATTCTACTGGGGCCCTGGTTACGCCTCCTCTGGCTCAGTCACACAGCTGCCTGGTAGGTGACTGGAGGCCTTGATCGGTTCTTATTGGGATTTTGCTGCTGTGGCCCCAACCCTTCCTCCCTCCCCACCCTGCAATGGCAGAAGAAACTCAACACAACAAATTGGCTGCAGCCAAGAAAAAGGTAAAAACGCACTAGGTCATAGCCCCTCAACCCAGCCACAGATCCCCTCTGATGACAAGACCCCTGCCAGAGTCTATATGACTCCTGAGGCACACTGGACTGGTCCCCCCAACCCCGGTGCCTTGGGCTACCCCCACCAAAGTTTTGTCAGTCAGCCCCACCCCTTCAGCAAGCAGCCCAGTCCTTGCCCTCGCCAATCACCCCAGGGTGACTTTGGGTGGGTGACTCCTGGGGCTTCCCGCTCCATTACTGGGCCCTCATCTCCTGCCGCCCCAAGCTTGATCTCCGTGGGCTCTTTGGGCTCTCATCTCCAAGGAGCCAGGCCCCACCCTCGCCAGTCATCCTTGGGTGACTTTGGGCTGGTGACTCCTGGGACTCCCTGCTGCAGACTGTGCCCTCCCCTCCTGCTGCCTCAAGGTCGACCTCCCTGGGTTCTTTGTGCTGGCGTCTCC
7RP11-1000B6.3ENSG00000261064.1chr153253554732536546AAGAATGCACAGAAAAAAATCATTCAGGTTAATAAGAGCAGTGAGCTGAGACTCCAGCCTGGCTCTGCTTAGTAAACCGTGGGTGTGGATTTAGAAGGCATACTTTCTCCTAAACCCTTCTATGAACATGTACTTCCCCGTCCCCTAAGTTCAGTAAGTTTACCACTCAATTACTCTCTCAAACTACCTCTTTCAAGCTTAAAAGAGCACTAATGCGGTTAAACTGATGAATAAAGCTCACTTTCTACCGGCTTTCCATTTGACCAAGTCTGTATTACTTAAAACAAAACACCCTAACTCCTAAAAGCCATTTCTTCCTTTAAACCATTTTATCCCACTTGCGACGTCCCCGCAGACACAGACTTGGAATTGCTTACGTGTAGTCCGTGTTATTCTTTCCTACATGGATGGGTTGTTTTCAGTTTGCTTGCAGTATTTCTGACATTTCCCGTTACAACATCCTGCTCTGCCAGCATCTTCAGGGCAAAGGTTGGGGGCCTAGCCCAGCTCCCAGCGGCAAGTACACTAGGCTCTTAACTTCGCTTGTCCTCTCTGCAGGCCCTGCCGAAGCTCCCCCTGGTTTCCCGCAGCGATCCCGCGCAGGTGAGGGTACTGGGGAGCCCGTGGCCTTCTCCGCCCGCCGGCTCCTCCCCATCAGCCGTCAGCCAGGGCTCTCGGCGCCGGGGAAGCCTCCCACAGGGTCCCAGGCCACCCAAGCGCGGTCAAACGCCGGCGGCCCGGCCTCGCTTACCTGACGCAGCCGCGCGTCCGCCTCGACCCATCAGGCGCGCAGGGCCCGCTCTCGAAACTCGCGCGGGCTCTCGCAGTCAGCCGCGCGGCCTTTAGCCGCGAAAACAGCGTGGCGCACGGTGGCGCCGCCGCAGCCGTGGGCCGCCGCGCCCAGGTAGCGCTCCAGCTGCCCGCATAGCTCCTGCAGCGCCACCTCGCCGGGGCCCGCGCGCGCCTGCCAGAGCAGCGCCCACAGCCCGAGCCCCAGACT
8FUNDC2ENSG00000165775.17chrX155025480155026479ATTAGCCGGGCATGGTGGCACGTGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGTGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCAACAAGAGCGAGACTCTGTCTCAAAAATAAAATAAATAAATAAATAAATAAATAATCAAAATAGACCCCATTACCAAATTTTCATGTTTTCAAGGATTCTCTAAAACCTACAATATTATCAATTACATATTCACAAATAATTACTGAATACAATATGGTATGTGGTAAAGTACAAAGGAGTACTGTGGCCATTTGTGATAAATAGAAATCAAATTGGAAATCTTCATAGATAACGTATTTTTTCTTTTTTTTTTGGAGACGCAGTCTCACTCTGTCGCCCAGGCTGGAGTGCAGTGTCGCGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGGCCGCCACCATGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTAGCCAGGATGGCCTCGATCTCCTGACCGCGTGATCCGCCCGCCTCGGCCTCCGAAACTGCTGAAATTACAGGCGTGAGCCACCGCGCCCGGCCAGATAAGGTATATTTTTATTCCTTTTATTTTTACTCAACTCCTATGGTGCCACAAAATCCTATATTAAGCAGTATAATTGAAAAGAAAAAGAAAACAATAGCACAATGATTATAAAGAAAATAGCCTGAGTTAACTTCATTTGTGTCACTCCTAAAGCAGTGGATCAGATGTCAATGTTTATTATCATTCACTAATTACATTTATGAATAATTTTTAAAAGTAAAGGAAAAGACTGGCTGTTTTAACTAACATAATAGAAACTGTTGCTGGATTTTCTGTTGAAGGTATATTTTGAAGTGAGTTTTATTAAGTATAACTCGCATGTAAAATTCAA
Showing 1 to 8 of 8 rows